使用elasticsearch和kibana来生成词云图

1,934次阅读
没有评论

共计 5633 个字符,预计需要花费 15 分钟才能阅读完成。

使用elasticsearch和kibana来生成词云图

前几天在分析某影视短评,把数据导入了elasticsearch中,正好可以用elasticsearch来分析下,最后用kibana生成词云图

查看下当前数据量

GET /_cat/indices/scrapy_douban_movie_comments?v

# 输出
health status index                        uuid                   pri rep docs.count docs.deleted store.size pri.store.size
green  open   scrapy_douban_movie_comments SdX9pi7BQjKgRj1tcf91XQ   3   2      12185         4828     24.8mb          8.2mb

看一下索引mapping

GET scrapy_douban_movie_comments

# 输出
{
  "scrapy_douban_movie_comments" : {
    "aliases" : { },
    "mappings" : {
      "properties" : {
        "comments" : {
          "type" : "text",
          "analyzer" : "ik_max_word"
        },
        "createtime" : {
          "type" : "date"
        },
        "date" : {
          "type" : "date"
        },
        "title" : {
          "type" : "text",
          "analyzer" : "ik_max_word"
        },
        "updatetime" : {
          "type" : "date"
        },
        "url" : {
          "type" : "text"
        },
        "user" : {
          "type" : "keyword"
        },
        "vote" : {
          "type" : "integer"
        }
      }
    },
    "settings" : {
      "index" : {
        "creation_date" : "1671077371923",
        "number_of_shards" : "3",
        "number_of_replicas" : "2",
        "uuid" : "SdX9pi7BQjKgRj1tcf91XQ",
        "version" : {
          "created" : "7070099"
        },
        "provided_name" : "scrapy_douban_movie_comments"
      }
    }
  }
}

看了下上面comments 这个字段存储了用户评论,博主已对它进行ik分词,但是此时kibana词云图中是无法选该字段,因为该字段为text类型,无法agg或sort操作,尝试在dev tools中执行聚合操作会报错

GET scrapy_douban_movie_comments/_search
{
  "size": 0,
  "aggs": {
    "comments_terms": {
      "terms": {
        "field": "comments",
        "size": 50
      }
    }
  }
}

# 输出
{
  "error" : {
    "root_cause" : [
      {
        "type" : "illegal_argument_exception",
        "reason" : "Text fields are not optimised for operations that require per-document field data like aggregations and sorting, so these operations are disabled by default. Please use a keyword field instead. Alternatively, set fielddata=true on [comments] in order to load field data by uninverting the inverted index. Note that this can use significant memory."
      }
    ],
    "type" : "search_phase_execution_exception",
    "reason" : "all shards failed",
    "phase" : "query",
    "grouped" : true,
    "failed_shards" : [
      {
        "shard" : 0,
        "index" : "scrapy_douban_movie_comments",
        "node" : "Vgd49fa4Qrir7oHXUGW_zw",
        "reason" : {
          "type" : "illegal_argument_exception",
          "reason" : "Text fields are not optimised for operations that require per-document field data like aggregations and sorting, so these operations are disabled by default. Please use a keyword field instead. Alternatively, set fielddata=true on [comments] in order to load field data by uninverting the inverted index. Note that this can use significant memory."
        }
      }
    ],
    "caused_by" : {
      "type" : "illegal_argument_exception",
      "reason" : "Text fields are not optimised for operations that require per-document field data like aggregations and sorting, so these operations are disabled by default. Please use a keyword field instead. Alternatively, set fielddata=true on [comments] in order to load field data by uninverting the inverted index. Note that this can use significant memory.",
      "caused_by" : {
        "type" : "illegal_argument_exception",
        "reason" : "Text fields are not optimised for operations that require per-document field data like aggregations and sorting, so these operations are disabled by default. Please use a keyword field instead. Alternatively, set fielddata=true on [comments] in order to load field data by uninverting the inverted index. Note that this can use significant memory."
      }
    }
  },
  "status" : 400
}

对于text类型字段,fiedlddata默认为false。此时我们可以将该字段得fielddata属性设置为true,设置之后该字段则支持agg查询。

同时我们对comments的分词需要定制下,因为使用的模式是ik_max_word,分词结果会存在单字的词,这不是博主想要的,双字词也会有很多无用的分词结果,所以最后决定将词数控制在4个或以上进行分词。

这里还出于另一个原因是:此时该字段agg操作运行后才会存储在heap内存中,而不是创建索引时就在内存生成,所以为减少heap占用,我们尽量减少无用的分词

注意:若是生产中则要重点关注text类型且fielddata为true的索引,避免其占用过多内存而导致OOM

同时集群中需要对fielddata做些限制:

GET _cluster/settings?include_defaults&flat_settings

# 输出
。。。。。。。略
    "indices.breaker.fielddata.limit" : "40%",
    "indices.breaker.fielddata.overhead" : "1.03",
    "indices.breaker.fielddata.type" : "memory",
。。。。。。。略
    "indices.fielddata.cache.size" : "-1b",
。。。。。。。略

indices.fielddata.cache.size

控制为 fielddata 分配的堆空间大小, 默认情况下,设置都是 unbounded ,Elasticsearch 永远都不会从 fielddata 中回收数据。如果采用默认设置,旧索引的 fielddata 永远不会从缓存中回收! fieldata 会保持增长直到 fielddata 发生断熔,这样我们就无法载入更多的 fielddata。所以我们需要修改默认值(不支持动态修改),可以通过在 config/elasticsearch.yml 文件中增加配置为 fielddata 设置一个上限:

indices.fielddata.cache.size: 20%

indices.breaker.fielddata.limit

fielddata 断路器默认设置堆的 40% 作为 fielddata 大小的上限。断路器的限制可以在文件 config/elasticsearch.yml 中指定,也可以动态更新一个正在运行的集群:

PUT /_cluster/settings
{
  "persistent" : {
    "indices.breaker.fielddata.limit" : "41%"
  }
}

1.重建新索引并设置mapping

此处我们定义了分词过滤器,只保留4字或以上的分词

PUT scrapy_douban_movie_comments_v4
{
  "settings": {
    "analysis": {
      "analyzer": {
        "ik_smart_ext": {
          "tokenizer": "ik_smart",
          "filter": [
            "bigger_than_4"
          ]
        }
      },
      "filter": {
        "bigger_than_4": {
          "type": "length",
          "min": 4
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "comments": {
        "type": "text",
        "analyzer": "ik_smart_ext",
        "fielddata": true
      },
      "createtime": {
        "type": "date"
      },
      "date": {
        "type": "date"
      },
      "title": {
        "type": "text",
        "analyzer": "ik_max_word"
      },
      "updatetime": {
        "type": "date"
      },
      "url": {
        "type": "text"
      },
      "user": {
        "type": "keyword"
      },
      "vote": {
        "type": "integer"
      }
    }
  }
}

2.索引重建

数据量也不多,作为测试使用,就不必设置size/sliced或其他配置。。。。

POST _reindex
{
  "source": {
    "index": "scrapy_douban_movie_comments"
  },
  "dest": {
    "index": "scrapy_douban_movie_comments_v4"
  }
} 

创建完后我们可以测试下对该字段agg操作

GET scrapy_douban_movie_comments_v4/_search
{
  "size": 0,
  "aggs": {
    "comments_terms": {
      "terms": {
        "field": "comments",
        "size": 5
      }
    }
  }
}

# 输出
{
  "took" : 6,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 10000,
      "relation" : "gte"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "comments_terms" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 10611,
      "buckets" : [
        {
          "key" : "莫名其妙",
          "doc_count" : 84
        },
        {
          "key" : "imax",
          "doc_count" : 64
        },
        {
          "key" : "中规中矩",
          "doc_count" : 64
        },
        {
          "key" : "忍者神龟",
          "doc_count" : 64
        },
        {
          "key" : "analog",
          "doc_count" : 57
        }
      ]
    }
  }
}

查看该索引中fielddata使用内存情况

{
  "_shards" : {
    "total" : 2,
    "successful" : 2,
    "failed" : 0
  },
  "_all" : {
    "primaries" : {
      "fielddata" : {
        "memory_size" : "142.8kb",
        "memory_size_in_bytes" : 146232,
        "evictions" : 0
      }
    },
    "total" : {
      "fielddata" : {
        "memory_size" : "321.6kb",
        "memory_size_in_bytes" : 329336,
        "evictions" : 0
      }
    }
  },
  "indices" : {
    "scrapy_douban_movie_comments_v4" : {
      "uuid" : "aW1mmy3WS5SZfg5XVQr-Cw",
      "primaries" : {
        "fielddata" : {
          "memory_size" : "142.8kb",
          "memory_size_in_bytes" : 146232,
          "evictions" : 0
        }
      },
      "total" : {
        "fielddata" : {
          "memory_size" : "321.6kb",
          "memory_size_in_bytes" : 329336,
          "evictions" : 0
        }
      }
    }
  }
}

3.kibana中创建词云标签图

使用elasticsearch和kibana来生成词云图
使用elasticsearch和kibana来生成词云图

正文完
 3
xadocker
版权声明:本站原创文章,由 xadocker 2022-12-16发表,共计5633字。
转载说明:除特殊说明外本站文章皆由CC-4.0协议发布,转载请注明出处。
评论(没有评论)